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Abstract

Robust and accurate visual localization is a fundamental
capability for numerous applications, such as autonomous
driving, mobile robotics, or augmented reality. It remains,
however, a challenging task, particularly for large-scale
environments and in presence of significant appearance
changes. State-of-the-art methods not only struggle with
such scenarios, but are often too resource intensive for cer-
tain real-time applications. In this paper we propose HF-
Net, a hierarchical localization approach based on a mono-
lithic CNN that simultaneously predicts local features and
global descriptors for accurate 6-DoF localization. We
exploit the coarse-to-fine localization paradigm: we first
perform a global retrieval to obtain location hypotheses
and only later match local features within those candidate
places. This hierarchical approach incurs significant run-
time savings and makes our system suitable for real-time
operation. By leveraging learned descriptors, our method
achieves remarkable localization robustness across large
variations of appearance and sets a new state-of-the-art on
two challenging benchmarks for large-scale localization.1

1. Introduction
The precise 6-Degree-of-Freedom (DoF) localization of

a camera within an existing 3D model is one of the core
computer vision capabilities that unlocks a number of re-
cent applications. These include autonomous driving in
GPS-denied environments [8, 31, 33, 6] and consumer
devices with augmented reality features [32, 24], where
a centimeter-accurate 6-DoF pose is crucial to guarantee re-
liable and safe operation and fully immersive experiences,
respectively. More broadly, visual localization is a key com-
ponent in computer vision tasks such as Structure-from-
Motion (SfM) or SLAM. This growing range of applica-
tions of visual localization calls for reliable operation both
indoors and outdoors, irrespective of the weather, illumina-
tion, or seasonal changes.

Robustness to such large variations is therefore critical,
along with limited computational resources. Maintaining
a model that allows accurate localization in multiple con-

1Code available at https://github.com/ethz-asl/hf_net
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Figure 1. Hierarchical localization. A global search first retrieves
candidate images, which are subsequently matched using powerful
local features to estimate an accurate 6-DoF pose. This two-step
process is both efficient and robust in challenging situations.

ditions, while remaining compact, is thus of utmost im-
portance. In this work, we investigate whether it is actu-
ally possible to robustly localize in large-scale changing en-
vironments with constrained resources of mobile devices.
More specifically, we aim at estimating the 6-DoF pose of a
query image w.r.t. a given 3D model with the highest possi-
ble accuracy.

Current leading approaches mostly rely on estimating
correspondences between 2D keypoints in the query and
3D points in a sparse model using local descriptors. This
direct matching is either robust but intractable on mo-
bile [51, 55, 43], or optimized for efficiency but fragile [29].
In both cases, the robustness of classical localization meth-
ods is limited by the poor invariance of hand-crafted local
features [9, 28]. Recent features emerging from convolu-
tional neural networks (CNN) exhibit unrivalled robustness
at a low compute cost [14, 15, 34]. They have been, how-
ever, only recently [52] applied to the visual localization
problem, and only in a dense, expensive manner. Learned
sparse descriptors [14, 38] promise large benefits that re-
main yet unexplored in localization.

Alternative localization approaches based on image re-
trieval have recently shown promising results in terms of
robustness and efficiency, but are not competitive in terms
of accuracy. The benefits of an intermediate retrieval step
have been demonstrated earlier [42], but fall short of reach-
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ing the scalability required by city-scale localization.
In this paper, we propose to leverage recent advances in

learned features to bridge the gap between robustness and
efficiency in the hierarchical localization paradigm. Sim-
ilar to how humans localize, we employ a natural coarse-
to-fine pose estimation process which leverages both global
descriptors and local features, and scales well with large
environments (Figure 1). We show that learned descrip-
tors enable unrivaled robustness in challenging conditions,
while learned keypoints improve the efficiency in terms of
compute and memory thanks to their higher repeatability.
To further improve the efficiency of this approach, we pro-
pose a Hierarchical Feature Network (HF-Net), a CNN that
jointly estimates local and global features, and thus maxi-
mizes the sharing of computations. We show how such a
compressed model can be trained in a flexible way using
multitask distillation. By distilling multiple state-of-the-art
predictors jointly into a single model, we obtain an incom-
parably fast, yet robust and accurate, localization. Such het-
erogenous distillation is applicable beyond visual localiza-
tion to tasks that require both multimodal expensive predic-
tions and computational efficiency. Overall, our contribu-
tions are as follows:

– We set a new state-of-the-art in several public bench-
marks for large-scale localization with an outstanding
robustness in particularly challenging conditions;

– We introduce HF-Net, a monolithic neural network
which efficiently predicts hierarchical features for
a fast and robust localization;

– We demonstrate the practical usefulness and effective-
ness of multitask distillation to achieve runtime goals
with heterogeneous predictors.

2. Related Work
In this section we review other works that relate to dif-

ferent components of our approach, namely: visual local-
ization, scalability, feature learning, and deployment on re-
source constrained devices.

6-DoF visual localization methods have traditionally been
classified as either structure-based or image-based. The for-
mer perform direct matching of local descriptors between
2D keypoints of a query image and 3D points in a 3D SfM
model [51, 55, 43, 27, 52]. These methods are able to es-
timate accurate poses, but often rely on exhaustive match-
ing and are thus compute intensive. As the model grows in
size and perceptual aliasing arises, this matching becomes
ambiguous, impairing the robustness of the localization,
especially under strong appearance changes such as day-
night [44]. Some approaches directly regress the pose from
a single image [7, 22], but are not competitive in term of
accuracy [46]. Image-based methods are related to image

retrieval [2, 56, 57] and are only able to provide an approx-
imate pose up to the database discretization, which is not
sufficiently precise for many applications [44, 52]. They are
however significantly more robust than direct local match-
ing as they rely on the global image-wide information. This
comes at the cost of increased compute, as state-of-the-art
image retrieval is based on large deep learning models.

Scalable localization often deals with the additional com-
pute constrains by using features that are inexpensive to ex-
tract, store, and match together [9, 26, 39]. These improve
the runtime on mobile devices but further impair the ro-
bustness of the localization, limiting their operations to sta-
ble conditions [29]. Hierarchical localization [21, 32, 42]
takes a different approach by dividing the problem into a
global, coarse search followed by a fine pose estimation.
Recently, [42] proposed to search at the map level using
image retrieval and localize by matching hand-crafted local
features against retrieved 3D points. As we discuss further
in Section 3, its robustness and efficiency are limited by the
underlying local descriptors and heterogeneous structure.

Learned local features have recently been developed in at-
tempt to replace hand-crafted descriptors. Dense pixel-wise
features naturally emerge from CNNs and provide a power-
ful representation used for image matching [11, 15, 37, 40]
and localization [52, 44]. Matching dense features is how-
ever intractable with limited computing power. Sparse
learned features, composed of keypoints and descriptors,
provide an attractive drop-in replacement to their hand-
crafted counterparts and have recently shown outstanding
performance [14, 38, 18]. They can easily be sampled from
dense features, are fast to predict and thus suitable for mo-
bile deployment. CNN keypoint detections have also been
shown to outperform classical methods, although they are
notably difficult to learn. SuperPoint [14] learns from self-
supervision, while DELF [36] employs an attention mecha-
nism to optimize for the landmark recognition task.

Deep learning on mobile. While learning some build-
ing blocks of the localization pipeline improves perfor-
mance and robustness, deploying them on mobile devices
is a non-trivial task. Recent advances in multi-task learn-
ing allow to efficiently share compute across tasks without
manual tuning [23, 10, 50], thus reducing the required net-
work size. Distillation [20] can help to train a smaller net-
work [41, 59, 60] from a larger one that is already trained,
but is usually not applied in a multi-task setting.

To the best of our knowledge, our approach is the first
of its kind that combines advances in the aforementioned
fields to optimize for both efficiency and robustness. The
proposed method seeks to leverage the synergies of these
algorithms to deliver a competitive large-scale localization
solution and bring this technology closer to real-time, on-
line applications with constrained resources.
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Figure 2. The hierarchical localization with HF-Net is signifi-
cantly simpler than concurrent approaches [43, 51], yet more ro-
bust, accurate, and efficient.

3. Hierarchical Localization
We aim at maximizing the robustness of the localiza-

tion while retaining tractable computational requirements.
Our method is loosely based on the hierarchical localiza-
tion framework [42], which we summarize here.

Prior retrieval. A coarse search at the map level is per-
formed by matching the query with the database images
using global descriptors. The k-nearest neighbors (NN),
called prior frames, represent candidate locations in the
map. This search is efficient given that there are far fewer
database images than points in the SfM model.

Covisibility clustering. The prior frames are clustered
based on the 3D structure that they co-observe. This
amounts to finding connected components, called places,
in the covisibility graph that links database images to 3D
points in the model.

Local feature matching. For each place, we successively
match the 2D keypoints detected in the query image to the
3D points contained in the place, and attempt to estimate a
6-DoF pose with a PnP [25] geometric consistency check
within a RANSAC scheme [16]. This local search is also
efficient as the number of 3D points considered is signif-
icantly lower in the place than in the whole model. The
algorithm stops as soon as a valid pose is estimated.

Discussion. In the work of [42], a large state-of-the-art
network for image retrieval, NetVLAD [2], is distilled into
a smaller model, MobileNetVLAD (MNV). This helps to
achieve given runtime constraints while partly retaining the
accuracy of the original model. The local matching step is
however based on SIFT [28], which is expensive to com-
pute and generates a large number of features, making this
step particularly expensive. While this method exhibits
good performance in small-scale environments, it does not
scale well to larger, denser models. Additionally, SIFT is
not competitive with recent learned features, especially un-
der large illumination changes [18, 38, 14, 34]. Lastly, a

significant part of the computation of local and global de-
scriptors is redundant, as they are both based on the image
low-level clues. The heterogeneity of hand-crafted features
and CNN image retrieval is thus computationally subopti-
mal and could be critical on resource-constrained platforms.

4. Proposed Approach
We now show how we address these issues and achieve

improved robustness, scalability, and efficiency. We first
motivate the use of learned features with a homogeneous
network structure, and then detail the architecture in Sec-
tion 4.1 and our novel training procedure in Section 4.2.

Learned features appear as a natural fit for the hierar-
chical localization framework. Recent methods like Su-
perPoint [14] have shown to outperform popular baseline
like SIFT in terms of keypoint repeatability and descriptor
matching, which are both critical for localization. Some
learned features are additionally significantly sparser than
SIFT, thus reducing the number of keypoints to be matched
and speeding up the matching step. We show in Section 5.1
that a combination of state-of-the-art networks in image re-
trieval and local features naturally achieves state-of-the-art
localization. This approach particularly excels in extremely
challenging conditions, such as night-time queries, outper-
forming competitive methods by a large margin along with
a smaller 3D model size.

While the inference of such networks is significantly
faster than computing SIFT on GPU, it still remains a large
computational bottleneck for the proposed localization sys-
tem. With the goal of improving the ability to localize on-
line on mobile devices, we introduce here a novel neural
network for hierarchical features, HF-Net, enabling an ef-
ficient coarse-to-fine localization. It detects keypoints and
computes local and global descriptors in a single shot, thus
maximizing sharing of computations, but retaining perfor-
mance of a larger baseline network. We show in Figure 2 its
application within the hierarchical localization framework.

4.1. HF-Net Architecture

Convolutional neural networks intrinsically exhibit a hi-
erarchical structure. This paradigm fits well the joint pre-
dictions of local and global features and comes at low ad-
ditional runtime costs. The HF-Net architecture (Figure 3)
is composed of a single encoder and three heads predicting:
i) keypoint detection scores, ii) dense local descriptors and
iii) a global image-wide descriptor. This sharing of com-
putation is natural: in state-of-the-art image retrieval net-
works, the global descriptors are usually computed from the
aggregation of local feature maps, which might be useful to
predict local features.

The encoder of HF-Net is a MobileNet [41] backbone, a
popular architecture optimized for mobile inference. Sim-
ilarly to MNV [42], the global descriptor is computed by
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Figure 3. HF-Net generates three outputs from a single image:
a global descriptor, a map of keypoint detection scores, and dense
keypoint descriptors. All three heads are trained jointly with multi-
task distillation from different teacher networks.

a NetVLAD layer [2] on top of the last feature map of
MobileNet. For the local features, the SuperPoint [14] ar-
chitecture is appealing for its efficiency, as it decodes the
keypoints and local descriptors in a fixed non-learned man-
ner. This is much faster than applying transposed convolu-
tions to upsample the features. It predicts dense descriptors
which are fast to sample bilinearly, resulting in a runtime
independent from the number of detected keypoints. On
the other hand, patch-based architectures like LF-Net [38]
apply a Siamese network to image patches centered at all
keypoint locations, resulting in a computational cost pro-
portional to the number of detections.

For its efficiency and flexibility, we thus adopt the Super-
Point decoding scheme for keypoints and local descriptors.
The local feature heads branch out from the MobileNet en-
coder at an earlier stage than the global head, as a higher
spatial resolution is required to retain spatially discrimina-
tive features, local features are on a lower semantic level
than image-wide descriptors [15].

4.2. Training Process

Data scarcity. Local and global descriptors are often
trained with metric learning using ground truth positive
and negative pairs of local patches and full images. These
ground truth correspondences are particularly difficult to
obtain at the scale required to train large CNNs. While
global supervision naturally emerges from local correspon-
dences, there is currently no such dataset that simulta-
neously i) exhibits a sufficient perceptual diversity at the
global image level, e.g. with various conditions such as day,
night, seasons, and ii) contains ground truth local corre-
spondences between matching images. These correspon-
dences are often recovered from the dense depth [38] com-
puted from an SfM model [47, 49], which is intractable to
build at the scale required by image retrieval.

Data augmentation. Self-supervised methods that do not
rely on correspondences, such as SuperPoint, require heavy
data augmentation, which is key to the invariance of the lo-
cal descriptor. While data augmentation often captures well
the variations in the real world at the local level, it can break
the global consistency of the image and make the learning
of the global descriptor very challenging.

Multi-task distillation is our solution to this data problem.
We employ distillation to learn the representation directly
from an off-the-shelf trained teacher model. This alleviates
the above issues, with a simpler and more flexible training
setup that allows the use of arbitrary datasets, as infinite
amount of labeled data can be obtained from the inference
of the teacher network. Directly learning to predict the out-
put of the teacher network additionally eases the learning
task, allowing to directly train a smaller student network.
We note an interesting similarity with SuperPoint, whose
detector is training by bootstrapping, supervised by itself
through the different training runs. This process could also
be referred as self-distillation, and shows the effectiveness
of distillation as a practical training scheme.

The supervision of local and global features can origi-
nate from different teacher networks, resulting in a multi-
task distillation training that allows to leverage state-of-the-
art teachers. Recent advances [23] in multi-task learning
enable a student s to optimally copy all teachers t1,2,3 with-
out any manual tuning of the weights that balance the loss:

L = e−w1 ||dg
s − dg

t1 ||
2
2 + e−w2 ||dl

s − dl
t2 ||

2
2

+ 2e−w3CrossEntropy(ps,pt3) +
∑
i

wi,
(1)

where dg and dl are global and local descriptors, p are key-
point scores, and w1,2,3 are optimized variables.

More generally, our formulation of the multi-task distil-
lation can be applied to any application that requires mul-
tiple predictions while remaining computationally efficient,
particularly in settings where ground truth data for all tasks
is expensive to collect. It could also be applied to some
hand-crafted descriptors deemed too compute-intensive.

5. Experiments
In this section, we present experimental evaluations of

the building blocks of HF-Net and of the network as a
whole. We want to prove its applicability to large-scale
localization problems in challenging conditions while re-
maining computationally tractable. We first perform in Sec-
tion 5.1 a thorough evaluation of current top-performing
classical and learning-based methods for local feature de-
tection and description. Our goal is to explain how these in-
sights influenced the design choices of HF-Net presented in
Section 5.2. We then evaluate in Section 5.3 our method on
challenging large-scale localization benchmarks [44] and



demonstrate the advantages of the coarse-to-fine localiza-
tion paradigm. To address our real-time localization focus,
we conclude with runtime considerations in Section 5.4.

5.1. Local Features Evaluation

We start our evaluation by investigating the performance
of local matching methods under different settings on two
datasets, HPatches [4] and SfM [38], that provide dense
ground truth correspondences between image pairs for both
2D and 3D scenes.

Datasets. HPatches [4] contains 116 planar scenes con-
taining illumination and viewpoint changes with 5 image
pairs per scene and ground truth homographies. SfM is a
dataset built by [38] composed of photo-tourism collections
collected by [19, 53]. Ground truth correspondences are
obtained from dense per-image depth maps and relative 6-
DoF poses, computed using COLMAP [47]. We select 10
sequences for our evaluation and for each randomly sam-
ple 50 image pairs with a given minimum overlap. A met-
ric scale cannot be recovered with SfM reconstruction but
is important to compute localization metrics. We therefore
manually label each SfM model using metric distances mea-
sured in Google Maps.

Metrics. We compute and aggregate pairwise metrics de-
fined by [14] over all pairs for each dataset. For the detec-
tors, we report the repeatability and localization error of the
keypoint locations. Both are important for visual localiza-
tion as they can impact the number of inlier matches, the re-
liability of the matches, but also the quality of the 3D model.
We compute nearest neighbor matches between descriptors
and report the mean average precision and the matching
score. The former reflects the ability of the method to re-
ject spurious matches. The latter assesses the quality of the
detector and the descriptor together. We also compute the
recall of pose estimation, either a homography for HPatches
or a 6-DoF pose for the SfM dataset, with thresholds of
3 pixels and 3 meters, respectively.

Methods. We evaluate the classical detectors Difference of
Gaussian (DoG) and Harris [17] and the descriptor Root-
SIFT [3]. For the learning-based methods, we evaluate
the detections and descriptors of SuperPoint [14] and LF-
Net [12]. We additionally evaluate a dense version of
DOAP [18] and the feature map conv3_3 of NetVLAD [2]
and use SuperPoint detections for both. More details are
provided in the appendix.

Detectors. We report the results in Table 1. Harris exhibits
the highest repeatability but also the highest localization er-
ror. Conversely, DoG is less repeatable but has the lowest
error, likely due to the multi-scale detection and pixel re-
finement. SuperPoint seems to show the best trade-off be-
tween repeatability and error.

HPatches SfM
Rep. MLE Rep. MLE

DoG 0.307 0.94 0.284 1.20
Harris 0.535 1.14 0.510 1.46
SuperPoint 0.495 1.04 0.509 1.45
LF-Net 0.460 1.13 0.454 1.44

Table 1. Evaluation of the keypoint detectors. We report the
repeatability (rep.) and mean localization error (MLE).

HPatches SfM
(detector / descriptors) Homography MS mAP Pose MS mAP

Root-SIFT 0.681 0.307 0.651 0.700 0.199 0.236
LF-Net 0.629 0.305 0.572 0.676 0.221 0.207
SuperPoint 0.810 0.441 0.846 0.794 0.418 0.488
Harris / SuperPoint 0.669 0.448 0.737 0.684 0.404 0.397
SuperPoint / DOAP - - - 0.838 0.448 0.554
SuperPoint / NetVLAD 0.788 0.419 0.798 0.800 0.374 0.423

Table 2. Evaluation of the local descriptors. The matching score
(MS) and mean Average Precision (mAP) are reported, in addition
to the homography correctness for HPatches and the pose accuracy
for the SfM dataset.

Descriptors. DOAP outperforms SuperPoint on all metrics
on the SfM dataset, but cannot be evaluated on HPatches as
it was trained on this dataset. NetVLAD shows good pose
estimation but poor matching precision on SfM, which is
disadvantageous when the number of keypoints is limited
or the inlier ratio important, e.g. for localization. Overall, it
stands that learned features outperform hand-crafted ones.

Interestingly, SuperPoint descriptors perform poorly
when extracted from Harris detections, although the latter
is also a corner detector with high repeatability. This hints
that learned descriptors can be highly coupled with the cor-
responding detections.

LF-Net and SIFT, both multi-scale approaches with sub-
pixel detection and patch-based description, are outper-
formed by dense descriptors like DOAP and SuperPoint. A
simple representation trained with the right supervision can
thus be more effective than a complex and computational-
heavy architecture. We note that SuperPoint requires signif-
icantly fewer keypoints to estimate a decent pose, which is
highly beneficial for runtime-sensitive applications.

5.2. Implementation Details

Motivated by the results presented in Section 5.1, this
section briefly introduces the design and implementation of
HF-Net. Below, we explain our choices of the distillation
teacher models, training datasets and improvements to the
baseline 2D-3D local matching.

Teacher models. We evaluate the impact of the two best
descriptors, DOAP and SuperPoint, on the localization in
Section 5.3. Results show that the latter is more robust to
day-night appearance variations, as its training set included
low-light data. We eventually chose it as the supervisor
teacher network for the descriptor head of HF-Net. The
global head is supervised by NetVLAD.



Training data. In this work, we target urban environments
in both day and night conditions. To maximize the perfor-
mance of the student model on this data, we select training
data that fits this distribution. We thus train on 185k im-
ages from the Google Landmarks dataset [36], containing
a wide variety of day-time urban scenes, and 37k images
from the night and dawn sequences of the Berkeley Deep
Drive dataset [58], composed of road scenes with motion
blur. We found the inclusion of night images in the training
dataset to be critical for the generalization of the global re-
trieval head to night queries. For example, a network trained
on day-time images only would easily confuse a night-time
dark sky with a day-time dark tree. We also train with pho-
tometric data augmentation but use the targets predicted on
the clean images.

Efficient hierarchical localization. Sarlin et al. [42] iden-
tified the local 2D-3D matching as the bottleneck of the
pipeline. Our system significantly improves on the effi-
ciency of their approach: i) Spurious local matches are
filtered out using a modified ratio test that only applies
if the first and second nearest neighbor descriptors cor-
respond to observations of different 3D points, similarly
to [35], thus retaining more matches in highly covisible ar-
eas. ii) Learned global and local descriptors are normalized
and matched with a single matrix multiplication on GPU.
Additional implementation details and hyperparameters are
provided in the appendix.

5.3. Large-scale Localization

Under the light of the local evaluation, we now evalu-
ate our hierarchical localization on three challenging large-
scale benchmarks introduced by [44].

Datasets. Each dataset is composed of a sparse SfM model
built with a set of reference images. The Aachen Day-Night
dataset [45] contains 4,328 day-time database images from
a European old town, and 824 and 98 queries taken in day
and night conditions respectively. The RobotCar Seasons
dataset [30] is a long-term urban road dataset that spans
multiple city blocks. It is composed of 20,862 overcast ref-
erence images and a total of 11,934 query images taken in
multiple conditions, such as sun, dusk, and night. Lastly,
the CMU Seasons dataset [5] was recorded in urban and
suburban environments over a course of 8.5 km. It contains
7,159 reference images and 75,335 query images recorded
in different seasons. This dataset is of significantly lower
scale as the queries are localized against isolated submod-
els containing around 400 images each.

Large scale model construction. SfM models built with
COLMAP [47, 49] using RootSIFT are provided by the
dataset authors. These are however not suitable when local-
izing with methods based on different feature detectors. We
thus build new 3D models with keypoints detected by Su-

perPoint and HF-Net. The process is as follows: i) we per-
form 2D-2D matching between reference frames using our
features and an initial filtering ratio test; ii) the matches are
further filtered within COLMAP using two-view geometry;
iii) 3D points are triangulated using the provided ground
truth reference poses. Those steps result in a 3D model with
the same scale and reference frame as the original one.

Comparison of model quality. The HF-Net Aachen model
contains fewer 3D points (685k vs 1,899k for SIFT) and
fewer 2D keypoints per image (2,576 vs 10,230 for SIFT).
However, a larger ratio of the original 2D keypoints is
matched (33.8% vs 18.8% for SIFT), and each 3D point is
on average observed from more reference images. Match-
ing a query keypoint against this model is thus more likely
to succeed, showing that our feature network produces 3D
models more suitable for localization.

Methods. We first evaluate our hierarchical localization
based on learned features extracted by NetVLAD [2] and
SuperPoint [14]. Named NV+SP, it uses the most pow-
erful predictors available. We then evaluate a more effi-
cient localization with global descriptors and local features
computed by HF-Net. We also consider several localiza-
tion baselines evaluated by the benchmark authors. Active
Search (AS) [43] and City Scale Localization (CSL) [51]
are both 2D-3D direct matching methods representing
the current state-of-the-art in terms of accuracy. Den-
seVLAD [56] and NetVLAD [2] are image retrieval ap-
proaches that approximate the pose of the query by the
pose of the top retrieved database image. The recently-
introduced Semantic Match Consistency (SMC) [55] relies
on semantic segmentation for outlier rejection. It assumes
known gravity direction and camera height and, for the
RobotCar dataset, was trained on the evaluation data using
ground truth semantic labels. We introduce an additional
baseline, NV+SIFT, that performs hierarchical localization
with RootSIFT as local features, and is an upper bound to
the MNV+SIFT method of [42].

Results. We report the pose recall at position and orien-
tation thresholds different for each sequence, as defined by
the benchmark [44]. Table 3 shows the localization results
for the different methods. Cumulative plots for the three
most challenging sequences are presented in Figure 4.

Localization with NV+SP. On the Aachen dataset, NV+SP
is competitive on day-time queries and outperforms all
methods for night-time queries, where the performance
drop w.r.t. the day is significantly smaller than for direct
matching methods, which suffer from the increased ambi-
guity of the matches. On the RobotCar dataset, it performs
similarly to other methods on the dusk sequence, where
the accuracy tends to saturate. In the more challenging se-
quences, image retrieval methods tend to work better than
direct matching approaches, but are far outperformed by
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AS 57.3 / 83.7 / 96.6 19.4 / 30.6 / 43.9 44.7 / 74.6 / 95.9 25.0 / 46.5 / 69.1 0.5 / 1.1 / 3.4 1.4 / 3.0 / 5.2 55.2 / 60.3 / 65.1 20.7 / 25.9 / 29.9
CSL 52.3 / 80.0 / 94.3 24.5 / 33.7 / 49.0 56.6 / 82.7 / 95.9 28.0 / 47.0 / 70.4 0.2 / 0.9 / 5.3 0.9 / 4.3 / 9.1 36.7 / 42.0 / 53.1 8.6 / 11.7 / 21.1
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NetVLAD 0.0 / 0.2 / 18.9 0.0 / 2.0 / 12.2 7.4 / 29.7 / 92.9 5.7 / 16.5 / 86.7 0.2 / 1.8 / 15.5 0.5 / 2.7 / 16.4 17.4 / 40.3 / 93.2 7.7 / 21.0 / 80.5
SMC - - (53.8 / 83.0 / 97.7) (46.7 / 74.6 / 95.9) (6.2 / 18.5 / 44.3) (8.0 / 26.4 / 46.4) 75.0 / 82.1 / 87.8 44.0 / 53.6 / 63.7
NV+SIFT 82.8 / 88.1 / 93.1 30.6 / 43.9 / 58.2 55.6 / 83.5 / 95.3 46.3 / 67.4 / 90.9 4.1 / 9.1 / 24.4 2.3 / 10.2 / 20.5 63.9 / 71.9 / 92.8 28.7 / 39.0 / 82.1
NV+SP (ours) 79.7 / 88.0 / 93.7 40.8 / 56.1 / 74.5 54.8 / 83.0 / 96.2 51.7 / 73.9 / 92.4 6.6 / 17.1 / 32.2 5.2 / 17.0 / 26.6 91.7 / 94.6 / 97.7 74.6 / 81.6 / 91.4
HF-Net (ours) 75.7 / 84.3 / 90.9 40.8 / 55.1 / 72.4 53.9 / 81.5 / 94.2 48.5 / 69.1 / 85.7 2.7 / 6.6 / 15.8 4.7 / 16.8 / 21.8 90.4 / 93.1 / 96.1 71.8 / 78.2 / 87.1

Table 3. Evaluation of the localization on the Aachen Day-Night, RobotCar Seasons, and CMU Seasons datasets. We report the recall [%]
at different distance and orientation thresholds and highlight for each of them the best and second-best methods. X+Y denotes hierarchical
localization with X (Y) as global (local) descriptors. SMC is excluded from the comparison for RobotCar as it uses extra semantic data.

Figure 4. Cumulative distribution of position errors for the Aachen night (left), RobotCar night-all (center) and CMU suburban (right)
datasets. On Aachen, HF-Net and NV+SP have similar performance and outperform approaches based on global retrieval and on feature
matching. On RobotCar, HF+Net performs worse than NV+SP, which suggests a limitation of the distillation process. On CMU, the
hierarchical localization shows a significant boost over other methods, particularly for small distance thresholds.

NV+SP in both fine- and coarse-precision regimes. On the
difficult CMU dataset, NV+SP achieves an outstanding ro-
bustness compared to all baselines, including the most re-
cent SMC. Overall, NV+SP sets a new state-of-the-art on
the CMU dataset and on the challenging sequences of the
Aachen and RobotCar datasets. The superior performance
in both fine- and coarse-precision regimes shows that our
approach is both more accurate and more robust.

Comparison with NV+SIFT. We observe that NV+SIFT
consistently outperforms AS and CSL, although all meth-
ods are based on the same RootSIFT features. This shows
that our hierarchical approach with a coarse initial prior
brings significant benefits, especially in challenging con-
ditions where image-wide information helps disambiguate
matches. It thus provides a better outlier rejection than com-
plex domain-specific heuristics used in AS and CSL. The
superiority of NV+SP highlights the simple gain of learned
features like SuperPoint. On the Aachen night and Robot-
Car dusk sequences, which are the easiest ones, NV+SIFT
performs marginally better than NV+SP for the fine thresh-
old. This is likely due to the lower localization accuracy
of the SuperPoint keypoints, as highlighted in Section 5.1,
since DoG performs a subpixel refinement.

Localization with HF-Net. On most sequences, HF-Net
performs similarly to its upper bound NV+SP, with a recall
drop of 2.6% on average. We show qualitative results in Fig-

ure 5 and in the appendix. In the RobotCar night sequences,
HF-Net is significantly worse than NV+SP. We attribute this
to the poor performance of the distilled global descriptors
on blurry low-quality images. This highlights a clear limi-
tation of our approach: on large, self-similar environment,
the model capacity of HF-Net becomes the limiting factor.
A complete failure of the global retrieval directly translates
into a failure of the hierarchical localization.

Distance thresh. NV+SP NV+HF-Net NV+DOAP HF-Net

Day
0.25m 79.7 81.2 80.0 75.7
0.5m 88.0 88.2 88.5 84.3
5m 93.7 94.2 93.3 90.9

Night
0.5m 40.8 40.8 34.7 40.8
1m 56.1 56.1 52.0 55.1
5m 74.5 76.5 72.4 72.4

Table 4. Ablation study on the Aachen Day-Night dataset. We
report the recall [%] of the hierarchical localization with diffrent
gloabal descriptors (NetVLAD and HF-Net) and local features
(SuperPoint, DOAP, and HF-Net).

Ablation study. In Table 4, we evaluate the influence
of different predictors within the hierarchical localization
framework. Comparing NV+SP with NV+HF, we note that
local HF-Net features perform better than the SuperPoint
model that was used to train them. This demonstrates the
benefits of multi-task distillation, where the supervision sig-
nal from the global teacher can improve intermediate fea-
tures and help local descriptors. We also observe that the lo-
calization with DOAP is significantly worse at night, which



Figure 5. Successful localization with HF-Net on the Aachen
Day-Night dataset. We show two queries (left) and the retrieved
database images with the most inlier matches (right).

might be due to the complex augmentation schemes Su-
perPoint is based on. Finally, the comparison of HF-Net
with NV+HF-Net reveals that HF-Net global descriptors
have a somewhat limited capacity compared to the original
NetVLAD and are limiting the performance.

5.4. Runtime Evaluation

As our propose localization solution was developed
keeping the computational constraints in mind, we analyze
its runtime and compare it with baselines presented in Sec-
tion 5.3. These were measured on a PC equipped with an
Intel Core i7-7820X CPU (3.60GHz) CPU, 32GB of RAM
and an NVIDIA GeForce GTX 1080 GPU. Table 5 presents
the detailed timings.

Datasets Methods Features Global Covis. Local PnP Total

A
ac

he
n

Day

AS 263 - - 112 375
NV+SIFT 92+263 7 8 1220 29 1356
NV+SP 92+26 7 5 9 9 148
HF-Net 15 7 5 9 9 45

Night

AS 263 - - 132 395
NV+SIFT 92+263 7 8 1492 56 1655
NV+SP 92+26 7 5 10 18 158
HF-Net 15 7 5 10 18 55

R
ob

ot
C

ar

Dusk

AS 189 - - 283 472
NV+SIFT 92+189 13 3 264 14 575
NV+SP 92+26 13 1 3 4 139
HF-Net 15 13 1 3 4 36

Night

AS 189 - - 1021 1210
NV+SIFT 92+189 13 3 389 149 835
NV+SP 92+26 13 1 6 38 176
HF-Net 15 13 1 6 38 73

Table 5. Timings [ms] for the different steps of hierarchical local-
ization: feature extraction, global search, covisibility clustering,
local matching, and pose estimation with PnP. Feature extraction
with SIFT or CNN and matching of learned descriptors are per-
formed on the GPU, and other operations on the CPU. We high-
light the fastest method for each sequence. Localizing with HF-
Net is 10 times faster than with AS, the fastest method available.

Hierarchical localization. Timings of NV+SP and HF-Net
show that our coarse-to-fine approach scales well to large
environments. The global search is fast, and only depends
on the number of images used to build the model. It success-
fully reduces the set of potential candidate correspondences
and enables a tractable 2D-3D matching. This strongly de-
pends on the SfM model – the denser the covisibility graph
is, the more 3D points are retrieved and matched per prior
frame, which increases the runtime. NV+SIFT is there-
fore prohibitively slow, as its SfM model is much denser,
especially on Aachen. NV+SP significantly improves on
it, as the sparser SfM model yield clusters with fewer 3D
points. The inference of NetVLAD and SuperPoint how-
ever accounts for 75% of its runtime, and is thus, as pre-
viously mentioned, the bottleneck. HF-Net mitigates this
issues with an inference 7 times faster.

Existing approaches. CSL and SMC are not listed in
Table 5 as they both require several tens of seconds per
query, and are thus three orders of magnitude slower than
our fastest method. AS improves on this, but is still slower,
especially in case of a low success rate, such as on Robot-
Car night. Overall, our localization system based on HF-
Net can run at 20 FPS on very large-scale environments. It
is 10 times faster than AS, designed for efficiency, and is
much more accurate on all datasets.

6. Conclusion
In this paper, we have presented a method for visual lo-

calization that is at the same time robust, accurate, and runs
in real-time. Our system follows a coarse-to-fine localiza-
tion paradigm. First, it performs a global image retrieval
to obtain a set of database images, which are subsequently
clustered into places using the covisibility graph of a 3D
SfM model. We then perform local 2D-3D matching within
the candidate places to obtain an accurate 6-DoF estimate
of the camera pose.

A version of our method is based on existing neural net-
works for image retrieval and feature matching. It out-
performs state-of-the-art localization approaches on several
large-scale benchmarks that include day-night queries and
substantial appearance variations across weather conditions
and seasons. We then improve its efficiency by proposing
HF-Net, a novel CNN that computes keypoints as well as
global and local descriptors in a single shot. We demon-
strate the effectiveness of multitask distillation to train it in
a flexible manner while retaining the original performance.
The resulting localization systems runs at more than 20 FPS
at large scale and offers an unparalleled robustness in chal-
lenging conditions.

Acknowledgements. We thank the reviewers for their valuable
comments, Torsten Sattler for helping to evaluate the localization,
and Eduard Trulls for providing support for the SfM dataset.



Appendix

We provide here additional experiment details and qual-
itative results.

A. HF-Net Implementation

A.1. Network Architecture

HF-Net is built on top of a MobileNetV2 [41] encoder
with depth multiplier 0.75. The local heads are identical to
the original SuperPoint [14] and branch off at the layer 7.
The global head is composed of a NetVLAD layer [2] and a
dimensionality reduction, implemented as a multiplication
with a learnable matrix, in order to match the dimension of
the target teacher descriptor. The global head is appended to
the MobileNet layer 18. The detailed architecture is shown
in Figure 6.
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Figure 6. Detail of the HF-Net architecture, consisting of a Mo-
biletNet encoder and three heads predicting a global descriptor, a
dense local descriptor map, and keypoint scores.

A.2. Training details

The images from both Google Landmarks [36] and
Berkeley Deep Drive [58] are resized to 640×480 and con-
verted to grayscale. We found RGB to be detrimental to the
performance of the local feature heads, most likely because
of the limited bandwidth of the encoder. As photometric
data augmentation, we apply, in a random order, Gaussian
noise, motion blur in random directions, and random bright-
ness and contrast changes.

The losses of the global and local descriptors are the L2
distances with their targets. For the keypoints, we apply the
cross-entropy with the target probabilities (soft labels). We
found hard labels to perform poorly, likely due to their spar-
sity and the smaller size of the student network. The three

losses are aggregated using the multi-task learning scheme
of Kendall et al. [23].

The MobileNet layers are initialized with weights pre-
trained on ImageNet [13]. The network is implemented
with Tensorflow [1] and trained for 85k iterations with the
RMSProp optimizer [54] and a batch size of 32. We use an
initial learning rate of 10−3, which is successively divided
by ten at iterations 60k and 80k.

B. Local Feature Evaluation

B.1. Setup

The images of both HPatches [4] and SfM [38] datasets
are resized so that their largest dimension is 640 pixels. The
metrics are computed on image pairs and follow the defini-
tions of [14, 38]. A keypoint k1 in an image is deemed
correct if its reprojection k̂1 in a second image lies within a
given distance threshold ε to a second detected keypoint k2.
Additionally, k1 is matched correctly if it is correct and if
k2 is its nearest neighbor in the descriptor space.

For HPatches, we detect 300 keypoints for both key-
point and descriptor evaluations, and set ε = 3 pixels.
The homography is estimated using the OpenCV function
findHomography and considered accurate if the aver-
age reprojection error of the image corners is lower than
3 pixels. For the SfM dataset, due to the extensive tex-
ture, 1000 keypoints are detected. The keypoint and de-
scriptor metrics use correctness thresholds ε of 3 and 5, re-
spectively. The 6-DoF pose is estimated with the function
solvePnPRansac, and deemed correct if its ground truth
is within distance and orientation thresholds of 3 m and 1◦,
respectively.

For DoG, Harris [17], and SIFT [28], we use the im-
plementations of OpenCV. For SuperPoint [14] and LF-
Net [38], we use the implementations provided by the au-
thors. For NetVLAD, we use the implementation of [12]
and the original model trained on Pittsburgh30k. Dense
descriptors are obtained by normalizing the feature map
conv3_3 before the ReLU activation. For DOAP [18],
we use the trained model provided by the authors. As
we are mostly interested in dense descriptors for run-time
efficiency, we disable the spatial transformer and enable
padding in the last layer, thus producing a feature map four
times smaller than the input image. We found the model
trained on HPatches with spatial transformer to give the best
results and thus only evaluate DOAP on the SfM dataset.
As a post-processing, we apply Non-Maximum Suppres-
sion (NMS) with a radius of 4 to both Harris and Super-
Point. Sparse descriptors are sampled from the dense maps
of SuperPoint, NetVLAD, and DOAP using bilinear inter-
polation.



B.2. Qualitative Results

We show in Figures 7 and 8 detected keypoints and their
corresponding matches on the HPatches and SfM datasets,
respectively.

C. Large-scale Localization
C.1. Model Quality

Extended statistics of models built with SIFT and HF-
Net for the Aachen Day-Night, RobotCar Seasons, and
CMU Seasons datasets, are provided in Table 6. We also re-
port the track length, i.e. the number of observation per 3D
point, as defined by [48]. The metrics for the CMU dataset
are aggregated over the models of the slices corresponding
to the urban and suburban environments. For SIFT, some
metrics cannot be computed on the CMU model as the key-
points that are not matched were not provided.

Aachen RobotCar CMU
Statistics SIFT HF SIFT HF SIFT HF

# 3D points 1,900k 685k 6,869k 2,525k 961k 553k
# Keypoints per image 10,230 2,576 4,409 970 - 1,446
Ratio of matched keypoints [%] 18.8 33.8 39.4 59.9 - 45.3
Track length 5.85 5.87 5.34 4.71 4.11 4.95

Table 6. Statistics of 3D models built with SIFT and HF-Net.

C.2. Implementation Details

We now provide additional details regarding the imple-
mentation of our hierarchical localization pipeline. For all
datasets, we reduce the dimensionality of the global de-
scriptors predicted by both NetVLAD and HF-Net to 1024
dimensions using PCA, whose parameters are learned on
the reference images, independently for each dataset. A to-
tal of 10 prior frames are retrieved and clustered. Due to
limits on the GPU memory, features are extracted on im-
ages downsampled such that their largest dimension is 960
pixels for Aachen and Robotcar, and 1024 for CMU. For
both SuperPoint and HF-Net, NMS with radius 4 is applied
to the detected keypoints in the query image and 2k of them
are retained. When performing local matching, our modi-
fied ratio test uses a threshold of 0.9. PnP+RANSAC uses a
threshold on the reprojection error of 10 pixels for Aachen,
5 pixels for CMU (due to the lower image size), and 12
pixels for RobotCar (due to the lower keypoint localization
accuracy of SuperPoint and HF-Net). The estimated pose is
deemed correct when the number of inliers is larger than a
threshold, whose value is 12 for Aachen and CMU, and 15
for Robotcar.

C.3. Evaluation Process

The method and baselines introduced in this work are
evaluated on all three datasets by the benchmark’s au-
thors [44], who also generated the plots shown in the main

paper. For Active Search [43], City Scale Localization [51],
DenseVLAD [56], and NetVLAD [2], we use the evaluation
reported in the paper introducing the benchmark.

The evaluation of Semantic Match Consistency [55]
(SMC) is the one reported in the original paper. We do not
directly compare this method to the ones introduced in the
present work, nor to the benchmark baselines, as SMC as-
sumes a known camera height, and, more importantly, relies
on a semantic segmentation CNN which was trained on the
evaluation dataset of RobotCar. We emphasize that our HF-
Net never encountered any test data during training, and that
it was evaluated on the three datasets using the same trained
model.

C.4. Qualitative Results

Visual results of HF-Net on the Aachen Day-Night,
RobotCar Seasons, and CMU Seasons datasets are shown
in Figures 9, 10, and 11, respectively. We additionally show
a comparison with NV+SIFT in Figure 12.
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Figure 7. Qualitative results on the HPatches dataset. Keypoints (green if repeatable, red if not repeatable, blue if not visible in the other
image) and inlier matches are shown for SIFT (left), SuperPoint (center) and HF-Net (right).

Figure 8. Qualitative results on the SfM dataset for SIFT (left), SuperPoint (center) and HF-Net (right).



Figure 9. Localization with HF-Net on Aachen night. For each image pair, the left image is the query and the right image is the retrieved
database image with the most inlier matches, as returned by PnP+RANSAC. We show challenging successful queries (left), failed queries
due to an incorrect global retrieval (center), and failed queries due to incorrect or insufficient local matches (right).

Figure 10. Localization with HF-Net on RobotCar night and night-rain. For each image pair, the left image is the query and the right
image is the retrieved database image with the most inlier matches, as returned by PnP+RANSAC. We show challenging successful queries
(left), failed queries due to an incorrect global retrieval (center), and failed queries due to insufficient local matches (right).



Figure 11. Localization with HF-Net on CMU suburban. For each image pair, the left image is the query and the right image is the
retrieved database image with the most inlier matches, as returned by PnP+RANSAC. We show challenging successful queries (left), failed
queries due to an incorrect global retrieval (center), and failed queries due to insufficient local matches (right).

Figure 12. Comparison between HF-Net and NV+SIFT on Aachen night, with one query for which HF-Net returns the correct location
but NV+SIFT fails. We show the matches with one retrieved database image, labeled by PnP+RANSAC as inliers (green) and outliers
(red). We show the inliers of HF-Net (left), all the matches of HF-Net (center), and all the matches of NV+SIFT (right). HF-Net generates
significantly fewer matches than SIFT, thus reducing the computational footprint of the local matching. At the same time, more of its
matches are inliers, increasing the robustness of the localization. The higher inlier ratio reduces the number of required RANSAC iterations.


